Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 25(7): 709-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32484408

RESUMO

Three-dimensional (3D) spheroid models are rapidly gaining favor for drug discovery applications due to their improved morphological characteristics, cellular complexity, long lifespan in culture, and higher physiological relevance relative to two-dimensional (2D) cell culture models. High-content imaging (HCI) of 3D spheroid models has the potential to provide valuable information to help researchers untangle disease pathophysiology and assess novel therapies more effectively. The transition from 2D monolayer models to dense 3D spheroids in HCI applications is not trivial, however, and requires 3D-optimized protocols, instrumentation, and resources. Here, we discuss considerations for moving from 2D to 3D models and present a framework for HCI and analysis of 3D spheroid models in a drug discovery setting. We combined scaffold-free, multicellular spheroid models with scalable, automation-compatible plate technology enabling image-based applications ranging from high-throughput screening to more complex, lower-throughput microphysiological systems of organ networks. We used this framework in three case studies: investigation of lipid droplet accumulation in a human liver nonalcoholic steatohepatitis (NASH) model, real-time immune cell interactions in a multicellular 3D lung cancer model, and a high-throughput screening application using a 3D co-culture model of gastric carcinoma to assess dose-dependent drug efficacy and specificity. The results of these proof-of-concept studies demonstrate the potential for high-resolution image-based analysis of 3D spheroid models for drug discovery applications, and confirm that cell-level and temporal-spatial analyses that fully exploit multicellular features of spheroid models are not only possible but soon will be routine practice in drug discovery workflows.


Assuntos
Descoberta de Drogas , Imageamento Tridimensional/tendências , Imagem Molecular/tendências , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Humanos , Gotículas Lipídicas/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/ultraestrutura , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
2.
Methods Mol Biol ; 1683: 267-290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29082498

RESUMO

High Content Screening (HCS) platforms can generate large amounts of multidimensional data. To take full advantage of all the rich contextual information provided by these screens, a combination of traditional as well as nontraditional hit identification and prioritization strategies is required. Here, we describe the workflow and analytics of multidimensional high content data to differentiate, group, and prioritize hits.


Assuntos
Interpretação Estatística de Dados , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Fenótipo , Análise por Conglomerados , Descoberta de Drogas/métodos , Processamento de Imagem Assistida por Computador , Imagem Molecular/métodos , Controle de Qualidade
3.
PLoS One ; 9(10): e111385, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360548

RESUMO

BACKGROUND: P2Y(6), a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y(6) deficiency on atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y(6) receptors, showed that exogenous expression of P2Y(6) induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y(6)-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y(6) and in acute peritonitis models of inflammation. To evaluate the role of P2Y(6) in atherosclerotic lesion development, we used P2Y(6)-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y(6) receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y(6)xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y(6) deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. CONCLUSIONS: P2Y(6) receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y(6) deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y(6) in vascular disease pathophysiologies, such as aneurysm formation.


Assuntos
Aterosclerose/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Aterosclerose/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética
4.
J Biomol Screen ; 15(7): 882-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639503

RESUMO

The effective analysis and interpretation of high-content screening (HCS) data requires joining results to information on experimental treatments and controls, normalizing data, and selecting hits or fitting concentration-response curves. HCS data have unique requirements that are not supported by traditional high-throughput screening databases, including the ability to designate separate positive and negative controls for different measurements in multiplexed assays; the ability to capture information on the cell lines, fluorescent reagents, and treatments in each assay; the ability to store and use individual-cell and image data; and the ability to support HCS readers and software from multiple vendors along with third-party image analysis tools. To address these requirements, the authors developed an enterprise system for the storage and processing of HCS images and results. This system, HCS Road, supports target identification, lead discovery, lead evaluation, and lead profiling activities. A dedicated client supports experimental design, data review, and core analyses and displays images together with results for assay development, hit assessment, and troubleshooting. Data can be exported to third-party applications for further analysis and exploration. HCS Road provides a single source for high-content results across the organization, regardless of the group or instrument that produced them.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Ensaios de Triagem em Larga Escala/métodos , Estatística como Assunto , Interferência de RNA
5.
Mol Cancer Ther ; 7(11): 3490-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19001433

RESUMO

In developing inhibitors of the LIM kinases, the initial lead molecules combined potent target inhibition with potent cytotoxic activity. However, as subsequent compounds were evaluated, the cytotoxic activity separated from inhibition of LIM kinases. A rapid determination of the cytotoxic mechanism and its molecular target was enabled by integrating data from two robust core technologies. High-content assays and gene expression profiling both indicated an effect on microtubule stability. Although the cytotoxic compounds are still kinase inhibitors, and their structures did not predict tubulin as an obvious target, these results provided the impetus to test their effects on microtubule polymerization directly. Unexpectedly, we confirmed tubulin itself as a molecular target of the cytotoxic kinase inhibitor compounds. This general approach to mechanism of action questions could be extended to larger data sets of quantified phenotypic and gene expression data.


Assuntos
Antineoplásicos/química , Antineoplásicos/toxicidade , Quinases Lim/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Quinases Lim/metabolismo , Microscopia de Fluorescência , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
6.
J Biol Chem ; 278(16): 13611-4, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12618427

RESUMO

Acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol using 2-monoacylglycerol and fatty acyl coenzyme A. This enzymatic reaction is believed to be an essential and rate-limiting step for the absorption of fat in the small intestine. Although the first MGAT-encoding cDNA, designated MGAT1, has been recently isolated, it is not expressed in the small intestine and hence cannot account for the high intestinal MGAT enzyme activity that is important for the physiology of fat absorption. In the current study, we report the identification of a novel MGAT, designated MGAT3, and present evidence that it fulfills the criteria to be the elusive intestinal MGAT. MGAT3 encodes a approximately 36-kDa transmembrane protein that is highly homologous to MGAT1 and -2. In humans, expression of MGAT3 is restricted to gastrointestinal tract with the highest level found in the ileum. At the cellular level, recombinant MGAT3 is localized to the endoplasmic reticulum. Recombinant MGAT3 enzyme activity produced in insect Sf9 cells selectively acylates 2-monoacylglycerol with higher efficiency than other stereoisomers. The molecular identification of MGAT3 will facilitate the evaluation of using intestinal MGAT as a potential point of intervention for antiobesity therapies.


Assuntos
Aciltransferases/biossíntese , Aciltransferases/química , Aciltransferases/metabolismo , Coenzima A-Transferases/química , Gorduras na Dieta/metabolismo , Intestinos/enzimologia , Sequência de Aminoácidos , Aminoácidos/química , Animais , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Coenzima A-Transferases/metabolismo , DNA Complementar/metabolismo , Bases de Dados como Assunto , Retículo Endoplasmático/enzimologia , Humanos , Íleo/enzimologia , Insetos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...